TensorFlow: Google’s Open Source Machine Learning Platform

TensorFlow: Google’s Open Source Machine Learning Platform

Just a few days back, Google, in a not so surprising move, announced open sourcing its machine learning platform called TensorFlow. TensorFlow employs the concept of neural computation using Data Flow Graphs. Data flow graphs are represented as nodes and edges where nodes represent a mathematical operation or an endpoint for data ingestion, sending output, or reading and writing persistent variables. Edges, on the other hand, describe the input output relationship between the nodes. Typically a node represents a computational system and is executed asynchronously in parallel with others.

The primary reason Google quotes for making this an open source platform is to inspire more research, not only in the world of unique computational domains, but also research related to deep neural networks. One of the most important architectural aspects of TensorFlow is that it can be run on a multitude of devices such as desktop, server, mobile, you name it — leveraging computing power from all these different devices and in turn allowing it to demonstrate its capabilities as a truly portable machine learning platform.

Asynchronous computing, threads, and queues are first class citizens in TensorFlow allowing it to maximize performance from the available hardware running the compute elements of the data flow graph. It also supports auto-differentiation out of the box. It can automatically compute derivatives based on the available data combined with the objective function and predictive model definition. It is also extremely flexible in terms of supporting custom libraries. If you can express a computation in terms of a data flow graph, you can leverage TensorFlow’s capabilities. As simple as that!

Today, it supports Python and C++ interfaces as is, but Google is encouraging you to contribute SWIG (simplified wrapper and interface generator) interfaces in JavaScript, R, and other popular machine learning and data science languages.

Share the Post:
Heading photo, Metadata.

What is Metadata?

What is metadata? Well, It’s an odd concept to wrap your head around. Metadata is essentially the secondary layer of data that tracks details about the “regular” data. The regular

XDR solutions

The Benefits of Using XDR Solutions

Cybercriminals constantly adapt their strategies, developing newer, more powerful, and intelligent ways to attack your network. Since security professionals must innovate as well, more conventional endpoint detection solutions have evolved

AI is revolutionizing fraud detection

How AI is Revolutionizing Fraud Detection

Artificial intelligence – commonly known as AI – means a form of technology with multiple uses. As a result, it has become extremely valuable to a number of businesses across

AI innovation

Companies Leading AI Innovation in 2023

Artificial intelligence (AI) has been transforming industries and revolutionizing business operations. AI’s potential to enhance efficiency and productivity has become crucial to many businesses. As we move into 2023, several

data fivetran pricing

Fivetran Pricing Explained

One of the biggest trends of the 21st century is the massive surge in analytics. Analytics is the process of utilizing data to drive future decision-making. With so much of